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Figure D-1.  Parameters used in solution for radial flow to a well in a confined aquifer

Appendix D
General Analytical Solutions for
Application to Pumping Test Data

This appendix contains equations dealing with the
effects of pumping on aquifers, both confined and
unconfined, as well as the analysis of pump test results.

D-1.  Flow Equations for Aquifer Pumping

a. Steady-state solution in a confined aquifer.
For a pumping well similar to that shown in Figure D-1,
the magnitude of radial flow to a well is calculated by
the Thiem equation:

(D-1)

where

Q = flow into the well [L /T]3

b = aquifer thickness [L]

K = hydraulic conductivity [L/T]

h  = head at observation well (distance r  away) [L]i i

h  = head at well [L] w

r  = radius from center of well to observation welli

[L]

r  = radius of well [L]w

In the design of pump-and-treat systems, it is often
desired to estimate the lateral width of the influence of
the well.  The capture zone of a pumping well under
steady-state conditions and assuming uniform flow can
be estimated by:
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Figure D-2.  Parameters used in solution for radial flow to a well in an unconfined aquifer

(D-2)

where

y  = capture zone perpendicular to antecedent flowc

direction [L]

Q = flow into the well [L /T]3

v = specific discharge = -Kdh/dl [L/T]

b = aquifer thickness [L]

b. Steady-state solution in an unconfined aquifer.

(1) The solution of the Laplace equation for an
unconfined aquifer is similar to that for the confined
aquifer, except that change in aquifer thickness must be
addressed.  Figure D-2 presents a graphical representa-
tion of flow to a well in an unconfined aquifer.  The
magnitude of radial flow can be calculated by:

(D-3)

where

Q = flow to well

h  = head at point 1 [L]1

h  = head at point 2 [L]2

r  = radial distance from well to point 1 [L]1

r  = radial distance from well to point 2 [L]2

Assumptions (known as the Dupuit assumptions) inher-
ent in this equation are:  1) flow lines are horizontal and
equipotentials are vertical; and 2) the hydraulic gradient
is equal to the slope of the water table and is invariant
with depth.  Equation D-3 is useful for approximating
the hydraulic conductivity of an aquifer.
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(2) If observation wells are not available, the field (2) Drawdown is defined as the distance from the
application for Equations D-1 and D-3 can be simplified original piezometric surface to the new surface at a
by allowing r  to equal the radius of the well (r ), and r point a distance r from the center of the pumping well.1 w 2

to be approximated by the radius of influence of the
well, i.e., the radial distance at which drawdown W(u) = well function term, which is defined as:
approaches zero.

c. Unsteady flow solution in confined aquifers.  

(1) The solution of flow to a well under transient
(non-steady) conditions is complicated.  Assumptions
used in simplification are: a) that the aquifer is
isotropic, homogeneous, and of infinite areal extent;
b) the well fully penetrates the aquifer; c) the flow is
horizontal everywhere within the aquifer; d) the well
diameter is so small that storage within the well is
negligible, and; e) water pumped from the well is
discharged immediately with decline of piezometric
head.  Theis, in 1931, gave the following solution for
this problem:

(D-4) T = transmissivity [L /T]

where

s = drawdown [L]

(D-5)

(D-6)

where

r = radial distance in feet [L]

S = storativity coefficient [dimensionless]

t = duration of pumping [T]

2

(3) Table D-1 is a tabulation of W(u) given u,
which is easily calculated if S and T are known.  Unfor-
tunately, these aquifer parameters are usually unknown
and pumping tests must be performed.  By observing

Table D-1
Tabulation of W(u) Values for Use in Theis Equation

Values of W(u) for values of u 

u 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

x 1 0.219 0.049 0.013 0.0038 0.0011 0.00036 0.00012 0.000038 0.000012

x 10-1 1.82 1.22 0.91 0.70 0.56 0.45 0.37 0.31 0.26

x 10-2 4.04 3.35 2.96 2.68 2.47 2.30 2.15 2.03 1.92

x 10-3 6.33 5.64 5.23 4.95 4.73 4.54 4.39 4.26 4.14

x 10-4 8.63 7.94 7.53 7.25 7.02 6.84 6.69 6.55 6.44

x 10-5 10.94 10.24 9.84 9.55 9.33 9.14 8.99 8.86 8.74

x 10-6 13.24 12.55 12.14 11.85 11.63 11.45 11.29 11.16 11.04

x 10-7 15.54 14.85 14.44 14.15 13.93 13.75 13.60 13.46 13.34

x 10-8 17.84 17.15 16.74 16.46 16.23 16.05 15.90 15.76 15.65

x 10-9 20.15 19.45 19.05 18.76 18.54 18.35 18.20 18.07 17.95

x 10-10 22.45 21.76 21.35 21.03 20.84 20.66 20.50 20.37 20.25

x 10-11 24.75 24.06 23.65 23.36 23.14 22.96 22.81 22.67 22.55

x 10-12 27.05 26.36 25.96 25.67 25.44 25.26 25.11 24.97 24.86

x 10-13 29.36 28.66 28.26 27.97 27.75 27.56 27.41 27.28 27.16

x 10-14 31.66 30.97 30.56 30.27 30.05 29.87 29.71 29.58 29.46

x 10-15 33.96 33.27 32.86 32.58 32.35 32.17 32.02 31.88 31.76
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the drawdown over a period of time, the Theis equation and storativity) before the development of new steady-
can be solved for S and T.  This solution is not explicit state conditions resulting from pumping.  The assump-
and the solution is usually obtained graphically. tions inherent in the Theis equation include:

d. Unsteady flow in an unconfined aquifer.  In depression, well discharge is derived entirely from
practice, drawdowns in unconfined aquifers can be sig- aquifer storage and is discharged instantaneously with
nificant and the assumption that water released from decline in head, the discharging well penetrates the
storage is discharged immediately with decline of piezo- entire thickness of the aquifer, and well diameter is
metric head is breached.  Unconfined aquifers generally small in comparison with the pumping rate.  These
exhibit a behavior called delayed yield in which water is assumptions are best met by confined aquifers at sites
released from storage and specific yield at a time after remote from their boundaries.  The Theis equation is of
pumping has started.  Flow to a pumping well in an a form which cannot be solved directly, and is solved
unconfined (phreatic) aquifer occurs in three phases.  In through the use of a graphic method of solution called
the first phase, pumping has just started, and a phreatic type curves.  Analysis of aquifer-test data involves
aquifer behaves like a confined aquifer.  Water is plotting the test data (drawdown versus time) on
derived from storage i.e., expansion of water and com- logarithmic graph paper and aligning this curve with a
pression of the aquifer.  The time-drawdown plot for corresponding type curve from which values of
this phase emulates the Theis curve.  In the second transmissivity and storativity can be calculated.  The
phase, the phenomenon of delayed yield occurs.  During Theis equation can be used for unconfined aquifers
this phase, water remaining in the pores is drained by under the following two considerations: (1), if the
gravity (specific yield).  This gravity drainage repleni- aquifer is relatively fine-grained, water is not released
shes that portion of the aquifer supplying water to the instantaneously with the decline in head; thus, the value
well, resulting in a reduction in the rate of drawdown of storativity determined from a short-period test may
over the first phase.  This appears as the time-draw- be too small; and (2) the effect of dewatering the aquifer
down plot flattens in response to the secondary source decreases aquifer thickness and thus transmissivity.
of water.  In the third phase, the rate of drawdown and This dewatering effect can be addressed by the
the time-drawdown again emulate a Theis curve.  The following equation:
duration of either of the first two phases is a function of
the ratio of storage (S) to specific yield (S ).  If this ratio s' = s - (s /2b) (D-7)y

is in the range of 10  and 10 , it is an indication that S-1 -2

is relatively large and that one can anticipate a signifi- where
cant first phase.  The type of materials you would
expect to exhibit this behavior are sandy silts, silty-, s = observed drawdown in the unconfined aquifer
clayey-, or fine-grained sands.  When S/S  is in the [L]y

range of 10  to 10  it is an indication that S  is-4 -6
y

relatively large and that one can anticipate a significant b = aquifer thickness [L]
second phase.  The type of materials you would expect
to exhibit this behavior are clean sands and gravels.  In s' = drawdown that would have occurred if the
addition to S/S , the geometry of the time-drawdown aquifer was confined [L]y

graph can be affected by the location of the observation
well(s).  As the distance to an observation well
increases, the effects of S diminish.  

D-2.  Analysis of Pump Test Results 

a. Theis method.  As discussed in Section D-1,
the Theis equation allows for the determination of the
hydraulic characteristics of an aquifer (transmissivity

transmissivity is constant to the extent of the cone of

2

b. Cooper-Jacob method.  The Cooper-Jacob
method, developed by C. E. Jacob and H. H. Cooper in
1946, simplifies the Theis method.  This method uses
the fact that after a sufficiently long pumping time or at
a sufficient distance from the well, the test data tend to
form a straight line when plotted on a semilog scale.
The slope of the line formed allows the calculation of
transmissivity (T) and storativity (S).  The key addi-
tional assumption in the Cooper-Jacob method is that it
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is only applicable to that portion of the cone of where
depression where steady-state conditions prevail, or to
the entire cone only after steady-state conditions have Q = pumping rate [L /T]
developed.  This assumption is necessary because after
steady-state conditions have developed, the drawdowns t = time at which the drawdowns were measured
at an observation well begin to fall along a straight line [T]
on a semi-log graph.  The slope and zero drawdown line
intercept of this line can be entered into the following )s = drawdown across one log cycle [L]
analytical equations:  

r  = radial distance from the pumping well to the

(D-8)

(D-9)

where

Q = pumping rate [L /T]3

)s = drawdown across one log cycle [L]

t  = time at the point where a straight line0

intersects the zero-drawdown line [T]

r = distance from the pumping well to the
observation well [L]

c. Distance-drawdown analysis.  In the Jacob
distance-drawdown method, drawdowns at a specific
moment, from at least three observation wells located at
different distances from the pumping well are plotted on
a drawdown (arithmetic) and distance (logarithmic)
axis.  If the Theis assumptions and Jacob limitations are
satisfied, a straight line will be produced.  The slope of
this line is proportional to transmissivity and pumping
rate.  Storativity can then be computed as a function of
transmissivity, time, and the value of the intercept at the
point of zero drawdown. 

(D-10)

(D-11)

3

0

point where there is zero drawdown [L]

d. Corrections for partial penetration.  As previ-
ously stated, the Theis method assumes that pumping
wells fully penetrate the aquifer and all releases from
storage are derived directly and solely from the aquifer
being pumped.  Partial penetration of the well into the
aquifer causes vertical gradients of head to occur.
These vertical gradients in the vicinity of the well vio-
late a main assumption inherent in the fully penetrating
well solution.  When the well only partially penetrates
the aquifer, the average flow path length is increased so
that a greater resistance to flow is encountered.  The
relationship between flow Q and drawdown s between
the partially penetrating (subscript p) and fully penetra-
ting well is:  if Q  = Q, then s  > s; and if s  = s, thenp p p

Q  < Q.  The effect of partial penetration is negligiblep

on the flow pattern and drawdown if the radial distance
from the well to a point is greater than 7.5 times the
saturated thickness b of the aquifer.  

e. Vertical leakance.  In the development of the
Theis equation for the analysis of pumping-test data, it
was assumed that all water discharged from a pumping
well was derived instantaneously from storage in the
aquifer.  Therefore, in the case of a confined aquifer, at
least during the period of the test, the flow of water
across the confining beds is considered negligible.  This
assumption is often valid for many confined aquifers.
Many other aquifers, however, are bound by leaky con-
fining beds which transmit water to the well other than
that specified by the Theis equation.  The analysis of
aquifer tests conducted in these environments requires
the implementation of algorithms that have been devel-
oped for semi-confined aquifers.
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f. References.  The previously mentioned reader obtain a text such as Dawson and Istok (1991),
methods of analysis cover only a small fraction of the Driscoll (1986), Kruseman and DeRidder (1983), and
analytical methods available for a wide range of Walton (1987) for a comprehensive treatment of the
geologic/aquifer settings.  It is recommended that the subject matter.


